Decision Theory
Table of Contents
Risk
Posterior risk:
![\begin{equation*}
\begin{split}
r \big( \hat{\theta} \mid x \big) &= \int L \big( \theta, \hat{\theta}(x) \big) f( \theta \mid x ) \ d \theta \\
&= \mathbb{E}_{\theta \mid X} \Big[ L \big( \theta, \hat{\theta}(X) \big) \Big]
\end{split}
\end{equation*}](../../assets/latex/decision_theory_2a8303a58e32e81a1a76d119327ce6254efb70f4.png)
(Frequentist risk):
![\begin{equation*}
R(\theta, \hat{\theta}) = \int L \big( \theta, \hat{\theta}(x) \big) f(x \mid \theta) \ dx = \mathbb{E}_{x \mid \theta} \Big[ L \big( \theta, \hat{\theta}(X) \big) \Big]
\end{equation*}](../../assets/latex/decision_theory_f419c2dfd8f742b7b6f55bde4941b9e4d4408399.png)
Bayesian risk:
![\begin{equation*}
r \big( f, \hat{\theta} \big) = \iint L \big( \theta, \hat{\theta}(x) \big) f(x, \theta) \ dx d \theta = \mathbb{E}_{\theta, X} \Big[ L \big( \theta, \hat{\theta}(X) \big) \Big]
\end{equation*}](../../assets/latex/decision_theory_fa524e494c68d760b97ea3d87ceb7d1560bcb8d2.png)
Covariate shift
We assume that

but

The difference between the two domains is called covariate shift.
Posterior risk:
(Frequentist risk):
Bayesian risk:
We assume that
but
The difference between the two domains is called covariate shift.