Combinatorics
Let be a bipartite graph with partitions
.
Suppose
![\begin{equation*}
d_G(x) \ge r \quad \text{and} \quad d_G(y) \le s, \quad \forall x \in U, y \in W
\end{equation*}](../../assets/latex/combinatorics_333aacadcacb4ccd4e64e4b4f592bbf549978cc8.png)
where .
Then, for non-empty $A ⊂ U,
![\begin{equation*}
\left| \Gamma(A) \right| \ge \frac{r \left| A \right|}{s}
\end{equation*}](../../assets/latex/combinatorics_ec9b86577ae8b548d3a84bde3deac7a3a3ff044d.png)
Equality holds iff is (r, s)-regular and
.
Let $$$ be the subgraph induced by , then
![\begin{equation*}
r \left| A \right| \le e(H) \le s \left| \Gamma(A) \right|
\end{equation*}](../../assets/latex/combinatorics_1fcea09b9f90d0aeae485e9f78862eec1a413157.png)
where is the number of edges in
Let be a bipartite graph with partitions
.
Suppose
where .
Then, for non-empty $A ⊂ U,
Equality holds iff is (r, s)-regular and
.
Let $$$ be the subgraph induced by , then
where is the number of edges in